Interaction of RRF and EF-G from E. coli and T. thermophilus with ribosomes from both origins--insight into the mechanism of the ribosome recycling step.
نویسندگان
چکیده
Ribosome recycling factor (RRF), elongation factor-G (EF-G), and ribosomes from Thermus thermophilus (tt-) and Escherichia coli (ec-) were used to study the disassembly mechanism of post-termination ribosomal complexes by these factors. With tt-RRF, ec-EF-G can release bound-tRNA from ec-model post-termination complexes. However, tt-RRF is not released by ec-EF-G from ec-ribosomes. This complex with tt-RRF and ec-ribosomes after the tRNA release by ec-EF-G is regarded as an intermediate of the disassembly reaction. Not only tt-RRF, but also mRNA, cannot be released from ec-ribosomes by tt-RRF and ec-EF-G. These data suggest that the release of RRF from ribosomes is coupled or closely related to the release of mRNA during disassembly of post-termination complexes. With tt-ribosomes, ec-EF-G cannot release ribosome-bound ec-RRF even though they are from the same species, showing that proper interaction of ec-RRF and ec-EF-G does not occur on tt-ribosomes. On the other hand, in contrast to a published report, tt-EF-G functions with ec-RRF to disassemble ec-post-termination complexes. In support of this finding, tt-EF-G translocates peptidyl tRNA on ec-ribosomes and catalyzes ec-ribosome-dependent GTPase, showing that tt-EF-G has in vitro translocation activity with ec-ribosomes. Since tt-EF-G with ec-RRF can release tRNA from ec-post-termination complexes, the data are consistent with the hypothesis that the release of tRNA by RRF and EF-G from post-termination complexes is a result of a translocation-like activity of EF-G on RRF.
منابع مشابه
Domain II plays a crucial role in the function of ribosome recycling factor.
RRF (ribosome recycling factor) consists of two domains, and in concert with EF-G (elongation factor-G), triggers dissociation of the post-termination ribosomal complex. However, the function of the individual domains of RRF remains unclear. To clarify this, two RRF chimaeras, EcoDI/TteDII and TteDI/EcoDII, were created by domain swaps between the proteins from Escherichia coli and Thermoanaero...
متن کاملComplementary roles of initiation factor 1 and ribosome recycling factor in 70S ribosome splitting.
We demonstrate that ribosomes containing a messenger RNA (mRNA) with a strong Shine-Dalgarno sequence are rapidly split into subunits by initiation factors 1 (IF1) and 3 (IF3), but slowly split by ribosome recycling factor (RRF) and elongation factor G (EF-G). Post-termination-like (PTL) ribosomes containing mRNA and a P-site-bound deacylated transfer RNA (tRNA) are split very rapidly by RRF an...
متن کاملCharacterization of Mycobacterium tuberculosis ribosome recycling factor (RRF) and a mutant lacking six amino acids from the C-terminal end reveals that the C-terminal residues are important for its occupancy on the ribosome.
Ribosome recycling factor (RRF), coded for by the frr locus, is involved in the disassembly of post-termination complexes and recycling of the ribosomes for a fresh round of initiation in bacteria and in eukaryotic organelles. In a cross-species-complementation experiment, it was shown that the Thermus thermophilus RRF protein lacking five amino acids from its C-terminal end (deltaC5TthRRF) but...
متن کاملThe ribosome-recycling step: consensus or controversy?
Ribosome recycling, the last step in translation, is now accepted as an essential process for prokaryotes. In 2005, three laboratories showed that ribosome-recycling factor (RRF) and elongation factor G (EF-G) cause dissociation of ribosomes into subunits, solving the long-standing problem of how this essential step of translation occurs. However, there remains ongoing controversy regarding the...
متن کاملStructural insights into initial and intermediate steps of the ribosome-recycling process.
The ribosome-recycling factor (RRF) and elongation factor-G (EF-G) disassemble the 70S post-termination complex (PoTC) into mRNA, tRNA, and two ribosomal subunits. We have determined cryo-electron microscopic structures of the PoTC·RRF complex, with and without EF-G. We find that domain II of RRF initially interacts with universally conserved residues of the 23S rRNA helices 43 and 95, and prot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- RNA
دوره 11 3 شماره
صفحات -
تاریخ انتشار 2005